
30 The Delphi Magazine Issue 27

Delphi 3 Add-In Packages:
Digging The Dirt On Archaeopteryx
by Brian Long

Archaeopteryx is a Delphi 3
package I wrote some while

back after seeing a beta stage
add-in package designed to
enhance Delphi’s IDE called T-Rex.
T-Rex was written by Mike Scott
and John Howe and did such things
as add entries onto the component
palette’s right-click menu that rep-
resent each page on the compo-
nent palette. When a menu item is
chosen, the corresponding page is
selected. It also added the ability to
turn on the component palette tab
control’s MultiLine property, so all
pages could be viewed without
scrolling.

It would appear that T-Rex was
created after the authors saw
another Delphi 3 IDE enhancer
called (whilst in beta) Raptor, by
Eagle Software (Figure 1). This
product goes to town and signifi-
cantly enhances the Delphi Editor,
Object Inspector, various dialogs
and much more besides. T-Rex, of
course, is the name of a famous
dinosaur. Raptor is short for Velo-
ceraptor, a dinosaur made well
known by the film Jurassic Park.

Having seen these packages, I
wondered how they achieved such
cunning internal IDE devilry and
put some thought into the matter.
When I worked it out, I felt obliged
to see if I could do it too. The result
was Archaeopteryx (another dino-
saur: the first feathered bird type
thing). I chose one with a compli-
cated name to try and ensure
people couldn’t spell it and so
would find these other add-in prod-
ucts on the Web first. After all,
T-Rex (whose functionality I,
errrm, based my package’s on) was
designed to show what would be in
a planned product called Merlin
(Figure 2), and Raptor did signifi-
cantly more than my humble
creature does.

However, thanks to Bob Swart
for putting my bird on his website

(www.drbob42.com), it seemed to
prove quite popular. So, this article
professes to show you how to do
the same sort of customisation
yourself.

About Archaeopteryx...
The latest Archaeopteryx does the
following to Delphi 3. It adds menu
items to Delphi’s component pal-
ette popup menu for each palette

➤ Below: Figure 2, Merlin➤ Above: Figure 1, Raptor

November 1997 The Delphi Magazine 31

page, adds a Window menu (with
customisable caption to avoid
clashes), allows you to turn the flat
speed buttons back to non-flat but-
tons, turns the component palette
into a multiline tab control, turns
the palette pages into buttons (like
Windows task bar, to avoid multi-
line tab shuffling), turns on compo-
nent palette hot tracking (which
means the tab text changes colour
when the mouse is over it) and
un-hides several quite useful
Delphi main menu items which
have been left hidden by Borland.

All but the last facility can be tog-
gled on and off. Figure 3 shows
Archaeopteryx in full flight.

Implications Of Packages
To understand how to implement
this functionality requires really
only one fundamental point of
understanding about packages
(most things added into the IDE go
in as packages). What you need to
remember is that in your applica-
tions, whether you compile your
units into packages or not, you can
access the symbols therein just the
same. In other words, despite
packages being implemented as
DLLs, Delphi generates code to
access the symbols from the rele-
vant files transparently. Use of
packages should be thought of as
just a linker option and nothing
more. So what we see is that the
code in a package behaves just as if
it is part of the main application’s
address space. Semantically a
package’s code is part of the main
application.

So if we write a package and add
it into Delphi, we are effectively
extending the Delphi EXE file func-
tionality. This rather differs from
Delphi 1 and 2, where the addi-
tional files get added into a compo-
nent library, a regular DLL, and so
become explicitly part of a differ-
ent module. Semantically a DLL’s
code is completely separate from
the main application’s.

So what does this imply for the
Delphi add-in writer? Well it means
that we can write the sort of thing
that traditionally resides in
experts, with much less effort.
Because our package code is inher-
ently part of Delphi itself we can

talk directly to the objects
that Delphi is made up
from. Well okay, not
directly, but we can cer-
tainly gain access to them
fairly simply.

In-Proc Functionality:
I Am Delphi
In an add-in package, if we
use the Forms unit and refer
to the Application object, we are
talking to Delphi’s Application
object, the object that owns most
of the visible forms and has a Main-
Form property that refers to the
Delphi main window. That form
has a MainMenu property which
points to Delphi’s menu bar. Are
you starting to get the idea?

If we know the names of objects
in the Delphi IDE we can use Find-
Component to gain access to them
(see Listing 1, an extract from Com-
monStuff.Pas). A modified version
of the Resource Explorer (see this
month’s Delphi Clinic) proves
invaluable here. Of course one of
the other side-effects of writing
these add-ins as packages is that
the binary files are very small
indeed. Archaeopteryx takes all of
30kb.

Source Overview
The Archaeopteryx.Dpl
binary package is made
by loading and compil-
ing the package source
file Archaeopteryx.Dpk.
This package only
explicitly contains one
unit, Bones.Pas. This
unit uses all the other

relevant units that implement all
the functionality. There is one
extra unit for each piece of new
functionality available (these units
are implicitly contained in the
package). For some reason, when I
wrote Bones.Pas I thought I might
want to make different versions of
Archaeopteryx that contained dif-
ferent amounts of the available
functionality and so it has several
$defines that cause the units to be
pulled in (see Listing 2). There is
nothing else in this main unit.

Since I need event handlers
here, there and everywhere and
since event handlers are typically
implemented as methods, each
unit defines a class to house these
event handling methods. The ini-
tialization section of the unit cre-
ates an instance of the class and

function GetComponent(Owner: TComponent; const Name, Error: String): TComponent;
begin
Result := Owner.FindComponent(Name);
if not Assigned(Result) then
raise Exception.Create(Error);

end;

➤ Listing 1

{$define WindowMenu}
{$define PalettePopup}
{$define PaletteTweaking}
{$define HiddenMenus}
{$define NonFlatButtons}
uses
{$ifdef HiddenMenus}HiddenMenus,{$endif}
{$ifdef NonFlatButtons}NonFlatButtons,{$endif}
{$ifdef PalettePopup}PalettePopup,{$endif}
{$ifdef PaletteTweaking}PaletteTweaking,{$endif}
{$ifdef WindowMenu}WindowMenu,{$endif}
Messages;

➤ Listing 2

➤ Figure 3

32 The Delphi Magazine Issue 27

the finalization section frees the
instance. In this way each unit is
completely self-contained. The
classes are defined in the implemen-
tation section of their respective
unit, making them private and
ensuring the final binary package
doesn’t get bloated with automati-
cally exported references to the
classes and all their methods.

Common Code
Most of these class units use one
other unit called CommonStuff. This
defines the GetComponent function
as well as another class (instanti-
ated and tidied away in the unit).
The TIvoryHacker class is in the
interface section, as is the Stuff
object reference which gets set to
an instance of the class. As Listing
3 shows, Stuff has a number of
data fields that end up proving
useful in the other classes. There is
Ini, an object for talking to the reg-
istry (for storing Archaeopteryx
state information) and a couple
of fields that get mapped onto
various IDE components (using
GetComponent), a reference to
Delphi’s component palette and
the palette’s popup menu.

Also we find the About box pro-
cedure, DoAbout, which uses a fairly
unused VCL routine called Create-
MessageDialog as used internally by
ShowMessage and MessageDlg (see
the Delphi Clinic in Issue 23). This
is so the code can alter the normal
icon used to be a custom icon
before the dialog is displayed (see
Listing 4). Xavier Pacheco’s article
this month has information on
extracting version information
from your executable. Similar code
is used to get the product version
and version for display in the
About box.

The constructor is quite simple,
it creates the TRegIniFile object
and then sets up the IDE compo-
nent fields as in the following
statement:

const

SGenericError =

‘Cannot find requested component: ‘;

FTabControl := GetComponent(

Application.MainForm,

‘TabControl’, SGenericError +

‘TabControl’) as TTabControl;

TIvoryHacker = class(TObject)
public
FTabControl: TTabControl; //Component palette
FPalettePopup: TPopupMenu; //Palette popup menu
FOptions: TMenuItem; //Archaeopteryx options menu item
Ini: TRegIniFile; //Used to save and restore options in registry
procedure DoAbout(Sender: TObject); //Shows About box
procedure AddOptionsItem; //Ensures Options item exists
constructor Create;
destructor Destroy; override;

end;
var Stuff: TIvoryHacker;

➤ Listing 3

procedure TIvoryHacker.DoAbout(Sender: TObject);
begin
//Would normally use MessageDlg, but I want to customise
//the icon, so use the more primitive CreateMessageDialog
with CreateMessageDialog(SAboutMsg + VersionNumber, mtInformation, [mbOk]) do
try
(FindComponent('Image') as TImage).Picture.Icon.Handle :=
LoadIcon(HInstance, 'Archaeopteryx');

Caption := 'About Archaeopteryx';
ShowModal;

finally
Free

end;
end;

➤ Listing 4

The other code section worth look-
ing at in this unit is the AddOptions-
Item method which adds the
Options menu item on the compo-
nent palette’s popup menu
(remember that most options hang
off this menu and they are added
by different units, each of which
was designed to work independ-
ently). To manufacture the menu
item, rather than calling the appro-
priate class constructor and
setting properties individually, we
use an undocumented routine
from the Menus unit called NewItem.
NewItem makes a TMenuItem compo-
nent and sets the Caption, ShortCut,
Checked, Enabled, HelpContext, Name
and OnClick properties with values
passed as parameters. This can be
a good time-saver. Other undocu-
mented routines from the Menus
unit include NewMenu, NewPopupMenu,
NewSubMenu and NewLine.

The General Approach
The key units implement classes
that do much the same job to a

greater or lesser extent. We’ll take
a brief look through a simple one
and then move on to one that has
additional requirements. So firstly,
the NonFlatButtonsunit which adds
an option onto the speedbar to
allow you to turn the new sleek flat
speedbuttons into the old Delphi 2
normal, non-flat buttons. The TNon-
FlatButtons class is in Listing 6. It
has object references that the con-
structor connects to the speed bar
(a TPanel) and the speed bar’s
popup menu. Another object refer-
ence (FSpeedBarFlat) is associated
with a new menu item that gets
inserted into the popup menu. The
DoFlatButtons method becomes
it’s OnClick event handler, which
simply toggles the checkmark
property on the menu item and
then makes the buttons flat or
non-flat as required. That last job is
implemented in the SetFlatButtons
method.

The implementations of the
methods are shown in Listing 7.
You can see in the constructor that

procedure TIvoryHacker.AddOptionsItem;
begin
{ If another unit needs to add options items, they call this to add the main
Options sub-menu just above the last menu item (Properties) }

if not Assigned(FOptions) then begin
FOptions := NewItem('&Options', 0, False, True, nil, 0, '');
FPalettePopup.Items.Add(FOptions);
FOptions.MenuIndex := FPalettePopup.Items.Count - 1;

end;
end;

➤ Listing 5

34 The Delphi Magazine Issue 27

as well as locating the relevant IDE
components (whose names were
found using Resource Explorer)
the new menu item is manufac-
tured. Its initial checked state is
decided by reading the relevant
entry from the registry. If this is the
first time Archaeopteryx has run,
the registry will not have a value
and so the current state of the
speed bar’s flat-ness is used
instead. Once the menu item has
been added into the popup menu,
the appropriate state of the speed
buttons’ Flat properties is set with
a call to SetFlatButtons.

So that shows a simple IDE modi-
fication. But not all modifications
are that simple.

Changes Not
Involving Properties
When it comes to customising the
component palette tab control,
most of it can be done by writing
code that sets properties of the
Delphi 3 TTabControl component.
Properties such as MultiLine and
HotTrack deal with some of the
functionality, however to turn the
tabs into buttons there is no such
property (see last month’s Things
You Can Do With Standard Controls:
TPageControl article for details).

TNonFlatButtons = class(TObject)
private
FSpeedBarPopup: TPopupMenu;
FSpeedBar: TPanel;
FSpeedBarFlat: TMenuItem;

protected
procedure SetFlatButtons(Value: Boolean);
procedure DoFlatButtons(Sender: TObject);

public
constructor Create;
destructor Destroy; override;

end;

➤ Listing 6

So we have to set the appropri-
ate window style using the Win-
dows API. But care must be taken,
when various other things happen
(such as the Archaeopteryx user
toggling the multi-line option) the
underlying control will be recre-
ated and our new window style will
be lost. So the code that deals with
setting the hot-tracking and multi-
line options must also ensure the
tabs-as-buttons option is still
respected. Also, when the Multi-
line option is toggled the IDE needs
to be resized bigger or smaller to
accommodate the new number of
tab rows. Listing 8 shows the three
key methods for these points from
the TPaletteTweaking class in Palet-
teTweaking.Pas. Notice SetMulti-
Line makes use of another utility
routine UpdateIDESize, passing it
the number of tab rows that there
used to be. It then calculates how
much the IDE should be resized by
and does it (by sending a wm_Size
message).

More problems arise when
Archaeopteryx is being loaded as
Delphi 3 starts. The unit ini-
tialization sections get executed
and create all the customisation
objects. In the case of the TPalet-
teTweaking object, the constructor

is supposed to restore the saved
values for the component palette
options. However it fails, because
when Archaeopteryx is being
loaded, the tab control is in no
state to be told to change its
appearance.

All the settings are ignored. To
avoid this I have had to resort to a
rather unpleasant workaround of
using a timer that keeps ticking
every half second until it is safe to
talk to the tab control. If, when
Delphi 3 is loading, some error
occurs causing a message box to
be displayed (like a package not
being found) the timer spots this
and keeps on ticking. When it sets
the options, it disables itself. The
timer is created and set up in the
main object’s constructor and
freed in the destructor. Listing 9
shows the OnTimer handler.

Event Chaining:
A Necessary Sin?
Most of the rest of the problems
come from needing react to some
of Delphi’s events. This poses a bit
of a problem. The business of
event chaining is reasonably com-
monplace amongst Delphi hack-
ers. For examples of it you could
refer to the Tips & Tricks section in
Issue 7 (Event Chains) or the
Delphi Clinic in Issue 6 (Combo
Woes). Event chaining involves
saving the current event handler
for an event, assigning a new han-
dler to the event, and in the new
handler calling the old one. This
allows you to add functionality to
an existing event handler.

➤ Listing 7

constructor TNonFlatButtons.Create;
begin
inherited Create;
//Find speed bar
FSpeedBar := GetComponent(Application.MainForm,
'SpeedPanel', SGenericError + 'SpeedPanel') as TPanel;

//Find speed bar's popup menu
FSpeedBarPopup := GetComponent(Application.MainForm,
'SpeedbarMenu', SGenericError + 'SpeedbarMenu')
as TPopupMenu;
//Set up option menu item
FSpeedBarFlat := NewItem(SFlat, 0,
Stuff.Ini.ReadBool('PaletteLocalPopup', 'Flat Speedbar',
(FSpeedBar.Controls[0] as TSpeedButton).Flat), True,
DoFlatButtons, 0, '');

FSpeedBarPopup.Items.Insert(1, FSpeedBarFlat);
//Set the speedbar properties as dictated by registry
SetFlatButtons(FSpeedBarFlat.Checked);

end;
destructor TNonFlatButtons.Destroy;
begin
//Get rid of option menu item
FSpeedBarFlat.Free;
//Restore IDE original state

SetFlatButtons(True);
//Save option information
Stuff.Ini.WriteBool('PaletteLocalPopup', 'Flat Speedbar',
FSpeedBarFlat.Checked);

inherited Destroy
end;
procedure TNonFlatButtons.SetFlatButtons(Value: Boolean);
var Loop: Integer;
begin
//Set Flat option as appropriate
with FSpeedBar do
for Loop := 0 to ControlCount - 1 do
if Controls[Loop] is TSpeedButton then
TSpeedButton(Controls[Loop]).Flat := Value

end;
procedure TNonFlatButtons.DoFlatButtons(Sender: TObject);
begin
//Toggle Flat option
with (Sender as TMenuItem) do begin
Checked := not Checked;
SetFlatButtons(Checked)

end
end;

November 1997 The Delphi Magazine 35

procedure TPaletteTweaking.SetMultiLine(Value: Boolean);
var OldRows: Integer;
begin
OldRows := Stuff.FTabControl.Perform(tcm_GetRowCount, 0, 0);
Stuff.FTabControl.MultiLine := Value;
{ If MultiLine property changes, window gets recreated so need to set button
status back as appropriate since we hacked that option: it ain't a property }

SetButtons(FButtonsOption.Checked);
UpdateIDESize(OldRows);

end;
procedure TPaletteTweaking.SetHotTrack(Value: Boolean);
begin
Stuff.FTabControl.HotTrack := Value;
{ If HotTrack property changes, window gets recreated so need to set buttons
back as appropriate since we hacked that option: it ain't a property

SetButtons(FButtonsOption.Checked)
end;
procedure TPaletteTweaking.SetButtons(Value: Boolean);
var Style: Longint;
begin
{ TTabControl/TPageControl doesn't make buttons facility available as property}
Style := GetWindowLong(Stuff.FTabControl.Handle, gwl_Style);
if Value then
Style := Style or tcs_Buttons

else
Style := Style and not tcs_Buttons;

SetWindowLong(Stuff.FTabControl.Handle, gwl_Style, Style); //Set window style
end;

➤ Listing 8

procedure TPaletteTweaking.DoTimer(Sender: TObject);
begin
{ Triggers shortly after Delphi starts (or whenever package is initialised)
Only perform settings if no error message (such as a package load failure).
Errors are shown with MessageDlgs which are of type TMessageForm. Let timer
keep running until it's gone so the settings do actually take effect }

if not (Screen.ActiveForm.ClassName = 'TMessageForm') then begin
FTimer.Enabled := False;
SetMultiLine(FMultilineOption.Checked);
SetHotTrack(FHotTrackOption.Checked);
//Don't need to call this as both the previous routines do it anyway
//SetButtons(FButtonsOption.Checked);

end
end;

➤ Listing 9

This is fair enough in a self-
contained program, but when writ-
ing add-ins for another application
can be fraught with problems. Con-
sider this scenario. You install
T-Rex into Delphi 3 and T-Rex
chains onto a certain event it
needs. The value of the event prop-
erty in Delphi now refers to T-Rex
code, and T-Rex calls the original
routine. Now you load Archaeop-
teryx which happens to chain the
same event (as a lot of the function-
ality of the two packages is the
same).

The original event property now
refers to Archaeopteryx code, and
Archaeopteryx calls whatever
event hander was there first (ie
T-Rex code). If you decide at some
point to uninstall T-Rex, then that
package will (hopefully) obedi-
ently restore the original event
handler. This means that when the
event fires, the Archaeopteryx
code will no longer execute and
Archaeopteryx will therefore not
function correctly.

Even worse would be if the origi-
nal package were poorly written
and did not restore the original
event handler, then when Archae-
opteryx chains back to the previ-
ous handler it will be trying to jump
to an address that no longer has
code there. This will generate the
inevitable Access Violation that we
all love to loathe.

I know a little about Raptor. This
offers a programming API to allow
implementing plug-in extensions
to it. These plug-ins, baby Raptors
if you like, are able to talk to any
IDE components and trap what-
ever events they choose without
conflict. A particular internal
Raptor mechanism ensures this
smooth path is followed, the
details of which are not available.
However in the case of Archaeop-
teryx, we have to build our own
safety net.

In order to try and avoid prob-
lems Archaeopteryx checks any
event handlers that it chains to see
if they have already been chained.
If it spots one that has already been
interfered with it will alert the user
installing Archaeopteryx of the
potential problems. But only the
first time. Any further problems

are ignored (a registry setting
ensures this).

Before investigating this safety
net further let’s see where this
event chaining requirement crops
up in Archaeopteryx. Firstly, when
you right-click on the component
palette, a menu pops up. One of the
Archaeopteryx functions (imple-
mented in PalettePopup.Pas) is to
add individual menu items to this
menu for each page of the compo-
nent palette. In order to ensure
that the items accurately reflect
the current state of the component
palette, whenever the menu pops
up, we need to delete the old menu
items and add in new items to
match the current set of tabs. This
means we need to chain the popup
menu’s OnPopup event.

When the Delphi main window is
resized it might cause the multi-
line component palette to generate
extra or fewer rows and so we need
to chain the form’s OnResize event
to catch this and grow/shrink the
form’s height as required.

Finally, if the component palette
is in a multi-line state it seems that
Tools | Environment Options...
causes a cosmetic problem. When
you close the options dialog there
is an unpleasant degree of flicker-
ing as the palette gets redrawn
repeatedly for some reason. To
alleviate this we can chain that
menu item’s OnClick handler, set
the multi-line option off before
chaining to the old handler, and
then when the dialog is closed, set
the multi-line option back again.

As it happens there are a couple
of extra requirements that could
be satisfied with event handlers.

Some minor limitations of
Archaeopteryx include when a
component is installed (real or
template), or the palette reconfig-
ured (using either of the two avail-
able menu items) or the
component palette resized using
the splitter between it and the
speed bar, the multi-line palette
may also change the number of
lines of tabs displayed. All those

36 The Delphi Magazine Issue 27

IDE options are triggered through
events which could also be
chained in much the same way as
the previous one. However my
README.TXT file informs you that
I took the easy way out by suggest-
ing the user turn the multi-line
option off before taking any of
these actions and turning it back
on again afterwards.

In all these cases a data field is
required to store the old handler
and an appropriate method is
defined to act as the new handler.

Before finally changing the origi-
nal event property value the afore-
mentioned interference check is
made through a call to TestChain-
edEventHandler. This takes two
parameters, the address of the
code of the current event handler,
and the address of the original
event handler as set up by Borland.
An example of all this chaining is
shown in Listing 10 (all the extrane-
ous bits of code have been
removed from the listing to make it
easier to follow) along with the
implementation of TestChained-
EventHandler.

The event handling method is
typecast into a TMethod record and
the code address is passed along.
The Resource Explorer was used to
get the name of the original event
handling method from the form
resource. This is then turned into
an address using the main form’s
MethodAddress method. If the two
don’t match, a message is gener-
ated (the first time).

Final Comments
One more thing to discuss before
letting you loose on the code on
this month’s disk: the Window
menu. Firstly, because other add-in
packages offer Window menus,
this menu can be toggled on and off
using a menu item on the Archae-
opteryx Options menu. Also, to
avoid clashes with other menu
shortcuts the menu caption (which
defaults to W&indow, making Alt-I
the shortcut) can be customised
with a registry entry.

When you add new menus onto
the main menu bar there is some-
thing to be made aware of. In
Delphi 3’s OnIdle event, all the
item’s that show on the main menu
bar have their OnClick events trig-
gered. This is to allow the speed-
bar shortcut buttons to be enabled
and disabled as required.

For example, when the Edit
menu’s OnClick handler is trig-
gered, it ensures that the Cut, Copy
and Paste speedbuttons (if pres-
ent) look suitable as you work in
the editor, selecting and unselect-
ing text. Because of this, you
should not put too much code in
this OnClick handler, or perhaps
even better would be to only exe-
cute your code if the menu is
dropped down (that is the OnClick
is a real one, not a fake one from
Delphi). The OnClick will be real if
the Senderparameter in the OnClick
handler represents the menu item
concerned. If it represents some-
thing else (Application.MainForm)
then it is a fake OnClick from the
OnIdle handler.

➤ Listing 10

TPalettePopup = class(TObject)
private
...
FOldPaletteOnPopup: TNotifyEvent;

protected
...
procedure DoPalettePopup(Sender: TObject);

public
constructor Create;
destructor Destroy; override;

end;
constructor TPalettePopup.Create;
begin
inherited Create;
...
{ Chain component palette OnPopup event: may cause
problems if someone else chains on to it afterwards, and
then we are deleted. The later chainer will be referring
to dead code -> AV time. Save old OnPopup handler }

FOldPaletteOnPopup := Stuff.FPalettePopup.OnPopup;
//Warn user if event was already chained
TestChainedEventHandler(TMethod(FOldPaletteOnPopup).Code,
Application.MainForm.MethodAddress(
'PaletteLocalPopup'));

//Replace Delphi's event handler with our own
Stuff.FPalettePopup.OnPopup := DoPalettePopup;

end;

destructor TPalettePopup.Destroy;
begin
...
//Unchain the chained event handler
if Assigned(Stuff.FPalettePopup) then
Stuff.FPalettePopup.OnPopup := FOldPaletteOnPopup;

inherited Destroy;
end;
procedure TPalettePopup.DoPalettePopup(Sender: TObject);
begin
...
//Chain onto old OnPopup event handler
if Assigned(FOldPaletteOnPopup) then
FOldPaletteOnPopup(Stuff.FPalettePopup)

end;
procedure TestChainedEventHandler(
OldHandler, NewHandler: Pointer);

begin
{ If original (as designed) handler and current handler of
an event are not same, report error to user first time }

if (OldHandler <> NewHandler) and Stuff.Ini.ReadBool(
'Archaeopteryx', 'Warning', True) then begin
MessageDlg(SChainingWarning, mtWarning, [mbOk], 0);
//Set registry flag so the error is not reported again
Stuff.Ini.WriteBool('Archaeopteryx', 'Warning', False)

end
end;

The job of the Window menu’s
OnClick handler is to ensure that
the menu items that the user sees
accurately reflect which windows
Delphi has open, and to indicate
which one is the active window. In
implementing this I encountered
two primary problems. The first
was in my approach to find which
windows Delphi had open. I
thought it would be sensible to
iterate either through Applica-
tion.Components or Screen.Forms.
This got most windows but missed
the form designer windows. Delphi
clearly keeps track of these in
some other manner internally.
This I remedied using Windows
API calls to track down which visi-
ble windows were part of the
Delphi process (see Listing 11).

The other problem came when I
tried to make the Window menu a
bit more friendly. Trying to add a
shortcut of F11 for the Object
Inspector item in the menu caused
a bit of a problem under NT. I was
rather naively using TextToShort-
Cut to manufacture the shortcut
and was initially not differentiating
between real menu clicks and fake
Delphi ones. This effectively
meant I was calling TextToShortCut
over and over again as the OnIdle
event handler triggered my
OnClick event. Unfortunately it
seems that TextToShortCut’s imple-
mentation falls foul of a little
known NT memory leak. So the
memory allocated to the Delphi
process (according to NT Task
Manager) kept increasing by about
8Kb per second. Eventually, after a

November 1997 The Delphi Magazine 37

procedure TWindowMenu.DoWindowMenuClick(Sender: TObject);
var
Loop, Count, OldCount, PID: Integer;
Item: TMenuItem;
Wnd: HWnd;
WndClass, WndCaption: array[0..255] of Char;

begin
{ Delphi repetitively calls OnClick events of main menu
items to allow IDE code to en/disable speedbuttons as
necessary. We will only execute this code if it is a
real menu click (Sender = the menu item), not a fake one
from Delphi (where Sender = the main window) }

if Sender = FWindowMenu then begin
Count := 0;
{ It would normally be sensible to delete old items then
add new items. But for some reason that goes screwy
UI-wise, so instead we add new ones then delete old.
So, how many Window menu items were there? }

OldCount := FWindowMenu.Count;
//Add new menu items for current windows
Wnd := GetWindow(Application.Handle, gw_HWndFirst);
while Wnd <> 0 do begin
GetClassName(Wnd, WndClass, 255);
GetWindowThreadProcessID(Wnd, @PID);
//We only want windows in the Window menu
//that are... visible, enabled, have a caption,
//are not icon captions, are part of the Delphi
//process and are not the Application window
if IsWindowVisible(Wnd) and IsWindowEnabled(Wnd) and
(GetWindowText(Wnd, WndCaption, 255) > 0) and

(PID = GetCurrentProcessID) and
(StrPas(WndClass) <> '#32772') and
(StrPas(WndClass)<>Application.ClassName) then begin
Inc(Count);
//Make a new menu item, remembering to put the
//checkmark on the currently selected page
Item := NewItem(Format(SFormat,
[Count, StrPas(WndCaption)]), 0,
Wnd = Screen.ActiveCustomForm.Handle,
True, DoWindowItemClick, 0, '');

Item.RadioItem := True;
//Set up some unique group index to make
//menu items work like radio buttons
Item.GroupIndex := 57;
//Put F11 next to Object Inspector item as reminder
if StrPas(WndCaption) = 'Object Inspector' then
Item.ShortCut := vk_F11; //Don't use TextToShortCut!!

FWindowMenu.Add(Item);
//Ensure menu item has a reference to relevant form
Item.Tag := Wnd;

end;
Wnd := GetWindow(Wnd, gw_HWndNext)

end;
//Add About menu item
FWindowMenu.Add(NewLine);
FWindowMenu.Add(NewItem('&About Archaeopteryx...', 0,
False, True, Stuff.DoAbout, 0, ''));

//Now delete old (potentially wrong) window menu items
for Loop := 1 to OldCount do FWindowMenu.Items[0].Free;

end
end;

➤ Listing 11

few hours, NT would grind to a halt
because of Archaeopteryx (or
really because of TextToShortCut).

There is plenty more code in the
package but you can peruse it for
yourself. I’ve said all I think I need
to tell you about my findings writ-
ing this thing, so I’ll leave it down to

you now. However it’s worth con-
sidering that with this new package
model and the desire to write add-
ons being reasonably large, it
might not be long before we see an
official API available for extending
the IDE. I’ll leave you with that
thought. You can find more
information about Raptor at:
http://www.eagle-software.com

and about Merlin at:
http://www.boots.com/merlin.

Brian Long is a UK-based free-
lance Delphi and C++ Builder
consultant and trainer. He is
available for bookings and can
be contacted by email at
brian@blong.com.

	About Archaeopteryx...
	Implications Of Packages
	In-Proc Functionality: I Am Delphi
	Source Overview
	Common Code
	The General Approach
	Changes Not Involving Properties
	Event Chaining: A Necessary Sin?
	Final Comments

